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the scalar product between two eigendifferentials $1 
and ^2, centered at x and y, respectively, is 

r r Kiinilx'-y'l) 
X / dV / d?y' . (20) 

Since the Bessel function Ki(z) is always positive for 
z>0, this scalar product is positive and nonzero for 

I. INTRODUCTION 

MANY-BODY perturbation theory as developed 
by Brueckner1 and Goldstone2 has proven very 

useful in the study of many-particle systems. As shown 
by Brueckner, the appropriate form of perturbation 
theory as the number of particles becomes large is 
Rayleigh-Schrodinger theory modified so as to eliminate 
the ''unlinked clusters." The principal applications of 
the Brueckner-Goldstone linked cluster expansion (BG 
expansion) to many-fermion systems have thus far been 
investigations of nuclear structure3 and of the electron 
gas.4 However, the BG theory, which corrects both wave 
functions and energies, should also prove very useful 
in calculations of atomic structure and in other fields. 
In applying this theory to atoms, where the interparticle 
forces are well known, one also gains information as to 
its general applicability to finite systems. 

* Work supported in part by the U. S. Atomic Energy Com
mission. 

1 K. A. Brueckner, Phys. Rev. 97, 1353 (1955); 100, 36 (1955); 
The Many-Body Problem (John Wiley & Sons, Inc., New York, 
1959). 

2 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957). 
3 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 

(1958); K. A. Brueckner and K. S. Masterson, Jr., ibid. 128, 2267 
(1962). 

4 M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957). 

arbitrarily large distances | x—y | between the spheres 
in which the eigendifferentials are formed. Thus 
Lorentz-invariant localization, as we have formulated 
it, does not lead to orthogonal localized states. 

The nonorthogonality of the eigendifferentials means 
that there is no self-adjoint operator ("position op
erator") which has the localized state (17) in its 
continuous spectrum. This constitutes an unfortunate 
consequence of the decision to drop the orthogonality 
requirement included in the NW postulates. 

A previous application of BG theory to the calculation 
of correlation energies in the neutral beryllium atom 
yielded excellent results.5 However, it was found neces
sary to calculate high orders in the expansion. This 
difficulty was related to the set of single-particle 
Hartree-Fock states which were used. The purpose of 
this paper is to investigate the use of a different basis 
set for the expansion and to show the usefulness of 
perturbation calculations using this set. The states used 
are the ground-state Hartree-Fock orbitals and single-
particle excitations calculated in the Hartree-Fock 
potential field of the nucleus and N— 1 of the N ground-
state orbitals. The use of this set is justified in Sec. II. 
In Sec. I l l it is shown how sums over an infinite number 
of bound excited states may be carried out. In Sec. IV 
the 1=1 correlation energy among the two 2s electrons 
of Be is calculated. In Sec. V calculations are given for 
the dipole and quadrupole polarizabilities and shielding 
factors for Be. In Sec. VI many oscillator strengths and 
the photoionization cross section curve are calculated. 
Section VII contains the conclusions. 

6 H. P. Kelly, Phys. Rev. 131, 684 (1963), hereafter referred to 
as K. Correlation energies are defined in K. 
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Many-body perturbation theory as formulated by Brueckner and Goldstone is applied to atoms to obtain 
corrections to Hartree-Fock wave functions and energies. Calculations are made using a complete set of 
single-particle Hartree-Fock wave functions which includes both the continuum and an infinite number of 
bound states. It is shown how one may readily perform the sums over an infinite number of bound excited 
states. In order to demonstrate the usefulness of many-body perturbation theory in atomic problems, calcu
lations are made for a wide variety of properties of the neutral beryllium atom. The calculated 2s-2s cor
relation energy is —0.0436 atomic unit for 1=1 excitations. The calculated dipole and quadrupole polariz
abilities are 6.93 X10~24 cm3 and 14.1X10"40 cm6, respectively. The calculated dipole and quadrupole 
shielding factors are 0.972 and 0.75. Results are given for oscillator strengths, photoionization cross sections, 
and the Thomas-Reiche-Kuhn sum rule, which is 4.14 as compared with 4.00, the theoretical value. 
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II. PERTURBATION THEORY 

A. Review of the Brueckner-Goldstone 
Expansion 

The total Hamiltonian for a system of N identical 
fermions interacting through two-body ptoentials vtJ- is 

isr N 

(i) 

The kinetic energy for the it\i particle and the sum of all 
one-body potentials acting on it are given by 2\. For 
atoms T{ includes the interaction of the ^th electron 
with the nucleus. The true ground state of the system 
is ^o given by 

H*O=(EQ+AE)*0. (2) 

The effect of the N interacting particles may be approxi
mated by a single-particle potential V and then ^o is 
approximated by <$>o where 

and 
HQ$O=EO$O 

Ho^ZiTi+Vi). 

(3) 

(4) 

The single-particle wave functions, <pn which are solu
tions of 

(T+ V) <pn= €n<Pn , (5) 

constitute an orthonormal set, provided V is Hermitian. 
The state 3>0 is a determinant formed from the N solu
tions of Eq. (5) which are lowest in energy. The states 
occupied in 3>0 are called unexcited states. An unoccupied 
unexcited state is called a hole and an occupied excited 
state is called a particle. 

The BG result is that 

*o=z( H') $0, (6) 

where ZL means that only "linked" terms are to be 
included2 and 

Also, 

N N 

i<3 u-1 

L> \Eo-Ho J 

(7) 

(8) 

where U indicates that the sum is only over those terms 
which are "linked" when the leftmost Hf interaction is 
removed. 

To first order, the energy is 

£&> = £ 0 + < * o | W o > , (9) 

and when a Hartree-Fock basis is used 

&» = Em=Y.({n\T\n)+i(n\V\n)). (10) 

B. Choice of the Single-Particle Potential V 

The Hartree-Fock potential is defined by2 

(a\VnF\b)^Y,((an\v\bn)~-(an\v\nb)), (11) 

where a and b are arbitrary. This potential was used in 
K to obtain the complete set of single-particle Hartree-
Fock states which were used in calculating the correla
tion energy for Be. When F H F is used, Eq. (5) for the 
single-particle states <pn becomes 

•iV»^(r)-Z/r^(r)+(E / ^ '— — ) * 
\ jw J r— r' / 

. « 

N( f <Pf{f)<Pn(*) \ 
~ E ( d(msn)msj) / dxf (pj(r) 1 

y=i\ J | r—r' | / 
= en<pn(r). (12) 

This is the usual Hartree-Fock equation considered, for 
example, by Slater.6 Atomic units are used throughout 
this paper except where specified otherwise. Once the N 
unexcited states have been calculated self-consistently 
by solving the coupled Eqs. (12), F H F is determined and 
the remaining states of the orthonormal set are obtained 
by solving the single Eq. (12). As pointed out in K, 
excited states are calculated in the potential of N 
particles but unexcited states are calculated in the 
potential of N— 1 particles because of cancellation of 
direct and exchange terms when <pj= ^n . In K this led 
to the surprising result that all excited single-particle 
Hartree-Fock states for Be were in the continuum and 
it was conjectured that excited states of Eq. (12) would 
all lie in the continuum for most if not all neutral 
atoms. 

There are two advantages in dealing with only con
tinuum excited states. First, it is much simpler to 
solve Eq. (12) for continuum states than for bound 
states for which it becomes an eigenvalue equation. 
Second, sums over excited states are more readily per
formed when only continuum excited states need be 
considered. However, in the numerical work reported 
in the later sections of this paper it was found quite 
feasible both to solve Eq. (12) for bound states and to 
sum over excited bound and continuum states. There is 
also a disadvantage in using F H F as defined by Eqs. (11) 
or (12) for excited states. In K it was found that the 
perturbation expansion converged slowly for the cor
relation energy among 2s electrons; this was due to 
large effects from certain hole-particle interactions re
ferred to as second-type EPV (exclusion-principle-
violating) diagrams. They were shown to arise from the 
fact that interactions of excited particles with the oc
cupied unexcited states do not cancel the interaction 
with F H F as shown in Fig. 1. 

6 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc., New York, 1960), Vol. II, Chap. 17, p. 6. 
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FIG. 1. (a) Second-order energy diagram, (b) Particle in excited 
state ipk interacts with all occupied unexcited states <pn. Note that 
<PP and <pq are no longer occupied, (c) Particle in state <pk interacts 
with the potential V. When the Hartree-Fock potential FHF of 
Eq. (11) is used, diagram (b) does not fully cancel (c) because 
F H F includes interactions with all unexcited states. Diagrams (d) 
and its exchange and (e) result. If <pp and <pq have parallel spins 
there is also the exchange of diagram (e). There are similar dia
grams for the interactions of <pw. 

Since the excited particles actually interact with N—l 
other particles, it appears desirable to choose the po
tential accordingly.7 In the calculations of this paper for 
Be the excited states were calculated in the potential 
field of the nucleus and (Is)2(2s) where Is and 2s are 
the Hartree-Fock orbitals of the neutral beryllium 
atom. In this potential the excited states have direct 
interactions with two Is electrons and one 2s electron 
and also an exchange interaction with one Is electron. 
The excited states then correspond closely to the physi
cal single-particle excitations of beryllium. The 2s 
state for this potential coincides with the usual Hartree-
Fock 2s state. The new Is state differs from the Hartree-
Fock solution but this difference is expected to be small 
as the Is potential depends strongly on the interaction 
with the nucleus. However, there are now first-order 
corrections to the wave function as shown in Fig. 2. 
When these terms and similar terms in higher orders 
are added to $o the wave function becomes the usual 
Hartree-Fock 3>o- The appropriate procedure is to omit 

TABLE I. Orthogonality of s states.8 

(Is 
(Is 
(Is 
(Is 
(Is 
(u 
(Is 
as 
(Is 
(Is 
(Is 
(Is 
(Is 
(Is 
as 
(Is 

Is) 
2s) 
3s) 
4s) 
5s) 
0.1s) 
0.2s) 
0.6s) 
1.0s) 
1.6s) 
2.0s) 
3.0s) 
4.0s) 
5.0s) 
6.0s) 
S.Os) 

1.0000012 
0.0000357 
0.0000418 
0.0000272 
0.0000191 
0.0000723 
0.0001049 
0.0002253 
0.0003638 
0.0005253 
0.0005626 
0.0005056 
0.0003611 
0.0002009 
0.0001000 
0.0000254 

(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 
(2s 

2s) 
3s) 
4s) 
5s) 
0.1s) 
0.2s) 
0.3s) 
0.4s) 
0.6s) 
1.0s) 
2.0s) 
3.0s) 
4.0s) 
5.0s) 
6.0s) 
8.0s) 

1.0000001 
0.0000012 

-0.0000037 
-0.0000013 
0.0000010 
0.0000041 
0.0000075 
0.0000067 

-0.0000066 
0.0000007 

-0.0000014 
0.0000008 
0.0000002 

-0.0000001 
-0.0000015 
0.0000009 

a Continuum states are normalized so that asymptotically Pk(r) =sin(kr 
+ {\/k)]n2kr+8). 

7 1 would like to thank Professor K. A. Brueckner for stressing 
the desirability of using a potential for excited states which has a 
physical basis and yields rapid convergence of the perturbation 
expansion. 
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TABLE II. Radial functions p2s(r) for Be. 

r 

0.01 
0.02 
0.03 
0.04 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
1.20 
1.40 

iV to 
0.02569 
0.04936 
0.07110 
0.09104 
0.10926 
0.17771 
0.21536 
0.22985 
0.22700 
0.21123 
0.18596 
0.15381 
0.11681 
0.07655 
0.03428 

-0.00904 
-0.05261 
-0.09585 
-0.13827 
-0.17951 
-0.21929 
-0.25739 
-0.29366 
-0.32798 
-0.44492 
-0.52968 

P2*
b to 

0.02569 
0.04935 
0.07109 
0.09101 
0.10922 
0.17765 
0.21530 
0.22980 
0.22694 
0.21118 
0.18592 
0.15377 
0.11679 
0.07654 
0.03428 

-0.00901 
-0.05257 
-0.09580 
-0.13821 
-0.17944 
-0.21921 
-0.25730 
-0.29356 
-0.32788 
-0.44479 
-0.52953 

r 

1.60 
1.80 
2.00 
2.20 
2.40 
2.60 
2.80 
3.00 
3.40 
3.80 
4.20 
4.60 
5.00 
6.00 
7.00 
8.00 
9.00 
10.00 
11.00 
12.00 
14.00 
16.00 
18.00 

— e2s(a.u.) 

P2,
a to 

-0.58549 
-0.61697 
-0.62889 
-0.62566 
-0.61110 
-0.58835 
-0.55996 
-0.52797 
-0.45905 
-0.39016 
-0.32597 
-0.26870 
-0.21910 
-0.12683 
-0.07065 
-0.03828 
-0.02031 
-0.01060 
-0.00546 
-0.00278 
-0.00070 
-0.00017 
-0.00004 

0.30942 

P2sh to 

-0.58534 
-0.61683 
-0.62878 
-0.62559 
-0.61106 
-0.58833 
-0.55997 
-0.52799 
-0.45911 
-0.39027 
-0.32611 
-0.26884 
-0.21923 
-0.12692 
-0.07071 
-0.03834 
-0.02037 
-0.01065 
-0.00550 
-0.00281 
-0.00071 
-0.00017 
-0.00004 

0.30927 

a Calculated for this investigation. 1 a.u. =27.21 eV. 
b Calculated by Roothaan, Sachs, and Weiss, Ref. 9. 

the diagrams of Fig. 2 in calculations and to use the 
Hartree-Fock solutions for both Is and 2s states. Bound 
and continuum states were calculated for 7= 0, 1, and 2. 
The 7= 1 and 7= 2 states are orthonormal because they 
were all calculated with the same Hermitian potential 
and they are automatically orthonormal with respect 
to all 7=0 states. The 2s Hartree-Fock (HF) state and 
all excited 7=0 states were calculated with the same 
Hermitian potential and are orthonormal. The only 
deviations from orthonormality in the basis set arise 
from the nonorthogonality of the H F Is state with 
excited 7=0 states. This nonorthogonality is not an 
error or an approximation as may be seen from the dia
grams of Fig. 2. In actual calculations the nonorthogon
ality of the Is state and excited 7=0 states is expected 

(a) 

(b) 

FIG. 2. (a) Single-particle corrections to the wave function <l>o 
in first order. When <pu is a Hartree-Fock orbital, these corrections 
vanish. When <pu is not determined by the Hartree-Fock potential, 
these terms and similar higher order terms as shown in (b) added 
to <3>o give effectively the Hartree-Fock result. 
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FIG. 3. Corrections to <J>0 due to correlations among electrons in 
states p and q. (a) First-order term, (b) Diagonal hole-hole 
interaction, (c) Particle-particle interaction or ladder diagram. 
(d) and (e) are hole-particle interactions which represent the net 
effect of interactions of the particles in states i and j with all oc
cupied unexcited states and with the potential V. It is assumed 
that * is calculated in the field of all unexcited states except p 
and j in the field of all but q. (f) Exclusion principle violating 
diagram arising from the linked cluster factorization. 

to be very small. Overlap intergrals of Z=0 states are 
given in Table I. All integrals were calculated by Simp
son's rule. Orthogonality for the 1= 0 states is quite good, 
even for the Is state with excited states for which, in 
principle, exact orthogonality is not expected. The lack 
of exact orthogonality between Is and 2s states may be 
attributed to limits on the numerical accuracy of the 
H F Is state taken from the Kibartas and Yutsis solu
tion.8 All other states were calculated by the author's 
Hartree-Fock program which solves the following equa
tion for <pn. 

<Pu*(/)(pu(t
f) f ^2.*(r')^2.(rO 

+ 2 '•h' dt'~ 

7 - dtf-

r—r | 

*i.*(r')*»(r') 

r— r 
<Pn(r) 

<Pis(r)=en<pn(t). (13) 

r— r 

For Be, Z = 4 . The Is and 2s states used in Eq. (13) 
were taken from Kibartas and Yutsis.8 The 2s state 
calculated by the author's program was in good agree
ment with the Kibartas solution. Comparison with the 
2s Be solution of Roothaan9 is given in Table II . The 
very small disagreement in the fourth decimal place 
may not be attributed to a limit of accuracy for the 
author's program but is due to use of the Kibartas Is 
and 2s states rather than Roothaan's in Eq. (13). In 
the calculations of this paper the most important per
turbation terms are those involving 2s states and ex
cited 1=1 and 1= 2 states. 

C. Summation of Diagrams 

In order to obtain the corrections to <3>o due to corre
lations among a pair of electrons in states p and q, the 

8 V. V. Kibartas and A. P. Yutsis, Zh. Eksperim. i Teor. Fiz. 
25 264 (1953). 

»C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. 
Phys. 32, 186 (1960). 

diagrams of Fig. 3 are considered. For simplicity, states 
p and q have opposite spins. Figure 3(b) shows the di
agonal part of the hole-hole interaction which violates 
the exclusion principle as discussed in K. In general, 
hole-hole nondiagonal interactions are quite small. The 
diagram of Fig. 3(c) shows a particle-particle interac
tion. I t is assumed that the excited state i of Figs. 3 (a) 
and 3 (d) was calculated in the potential field of all un
excited states except for the state p. Interactions with 
the occupied unexcited states and with the potential 
combine to give the diagram (d). This diagram is 
analogous to that of Fig. 1(e). Similarly, it is assumed 
that the state j was calculated in the potential field of 
all unexcited states except for q and this gives Fig. 
3(e). Diagrams shown in Fig. 1(d) are not included 
because excited states are now calculated in the field of 
N—l unexcited states. When i and j are bound-states 
diagrams (b), (c), (d), and (e) of Fig. 3 are largest for 
diagonal matrix elements. Diagram (c) is largest for 
i=k, j=l and (d) and (e) are largest for i=k and j—k, 
respectively. The expression for the diagram of Fig. 
3(a) is 

(ep+ eq- a- ^(ijlvlpq). (14) 

For the diagonal interactions just described, the sum of 
diagrams 3 (b) through 3 (e) is given by 

L(^v+ ^~ U~ e3)~
l{(pq\v\pq)+ (ij\v\ij)- (iq\v\iq) 

-(PJl^lPJ^li^P+^-ei-e^iiJlvlpq). (15) 

When these diagonal interactions occur in the next order 
of perturbation theory the factor in brackets in Eq. 
(15) is repeated, and so the diagonal interactions give a 
geometric series which is readily summed to 

where 

D= (ep+eq 

D-'iiJlvlpq), (16) 

•(pq\v\pq))- ( e r f ej+ (ij\v\ij) 
-(iq\v\iq)-(pj\v\pj)). (17) 

When diagrams of the type shown in Fig. 3 (f) are con
sidered, D of Eq. (17) is further modified to10 

D= [ep+ €q~ (pq\v\pq)+ECOTr(p,q)+Ecorr(p, r^q) 

+E00TT(r^p, q)2~ [*4+ ey+ (ij\ v\ ij) 
-(iq\v\iq)-(pj\v\pj)-EG0T/(i,j)l. (18) 

The term EQQVV(p,q) is the correlation energy among the 
two electrons in states p and q. The term ECOrr(p, r^q) 
is the total correlation energy of an electron in state p 
from interactions with all unexcited states except for q 
and similarly for Ecovrir^p, q). The term EC0Tr'(i,j) is 
the sum of all terms contributing to the total correlation 
energy in which either of the excited states i or j occurs 
and in which the hole states differ from p and q. Equa-

10 In Ref. 5 diagrams of this type were shown to arise from the 
factorization of diagrams and they were labeled third class exclu
sion-principle-violating (EPV) diagrams. A more detailed analysis 
of such terms and their effects on Eq. (18) is given by H. Kelly, 
Phys. Rev. 134, A1450 (1964). 
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TABLE III. Dependence 

n 

2 
3 
4 
5 
6 
7 
8 

n 
2 
3 
4 
5 
6 
7 
8 

n 
2 
3 
4 
5 
6 
7 
8 

w 
2 
3 
4 
5 
6 
7 
8 

| ( 2 ^ | » | 2 * 2 s ) | 2 

3.644X10"2 

2.569X10"3 

7.371 X10~4 

3.171X10"4 

1.667X10"4 

9.889X10"5 

6.364X10-5 

\(np\r\2s)\> 
7.849X10° 
1.480X10"2 

1.299X10"2 

7.446X10"3 

4.443 X10~3 

2.823 XIO"3 

1.894X10"3 

\{np\r~*\2s)\> 
1.830X10"2 

1.711X10-3 

5.260X10"4 

2.327X10"4 

1.241 XIO"4 

7.424X10-3 

4.804X10-5 

\{np\r\U)\* 
2.515X10"^ 
4.774X10"3 

1.791 X10~3 

8.637X10"4 

4.819X10"4 

2.960X10"4 

1.947X10-4 

n*\{2pnp\v\2s2s)\ 

0.2915 
0.0694 
0.0472 
0.0396 
0.0360 
0.0339 
0.0326 

n*\(np\r\2s}\2 

62.794 
0.400 
0.831 
0.931 
0.960 
0.968 
0.970 

n*\{np\r*\2s)\* 
0.1464 
0.0462 
0.0337 
0.0291 
0.0268 
0.0255 
0.0246 

nz\{np\r\ls)\2 

0.2012 
0.1289 
0.1146 
0.1080 
0.1041 
0.1015 
0.0997 

* Only radial parts of matrix elements are given. 

tion (18) is the two-particle energy for states p and q 
minus the approximate two-particle energy for states i 
and j . In the first bracket, subtraction of (pq\v\pq) 
from ep+eq corrects for the fact that each single-
particle state was calculated in the potential field of the 
other and so the interaction of p with q was counted 
twice. Then cp-{"€q—(pq\v\pq) is the Hartree-Fock 
energy for the pair pq. ECOTr(p7q) accounts for higher 
order interactions of p with q and Ecoir(p, r^q) and 
EG0VV(r?±p, q) account for the higher order interactions 
of p and q with the other unexcited states since these 
interactions are not included in the H F calculation of 
ep and eq. In the second bracket, (ij \ v \ ij) accounts for 
the interaction of i with j and — (iq \ v \ iq) corrects for 
the fact that i, which was calculated with interactions 
with q, does not interact with q which is now unoccupied. 
The term — (pj | v | pj) corrects similarly for state j . 
The first five terms of the second bracket of Eq. (18) 
then give essentially the H F energy of the excited pair 
ij, The term — EQOJ&J) does not give correlations 
between i and j but accounts for the fact that all cor
relations among unexcited pairs which involve excita
tions into states i or j are eliminated by the Pauli 
principle when p and q are excited into i and j . Although 
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of matrix elements on n* 

n 

3 
4 
5 
6 
7 
8 
9 

10 

n 
3 
4 
5 
6 
7 
8 
9 

10 

n 
3 
4 
5 
6 
7 
8 
9 

10 

n 
3 
4 
5 
6 
7 
8 
9 

10 

| < fKf | r* |2 s> |* 

5.169X101 

1.604X101 

7.022X10° 
3.724X10° 
2.223X10° 
1.438X10° 
9.857X10-1 

7.062 X10"1 

\(nd\r~*\2s)\* 
7.317X10"6 

4.099X10"5 

2.328 X10~5 

1.419X10-* 
9.176X10"6 

6.259X10~6 

4.437X10~6 

3.284X10"6 

\{nd\r2\Uy 
9.711 X10~5 

5.707X10"5 

3.304X10-* 
2.030X10~5 

1.323X10-* 
9.051 X10~6 

6.446X10-6 

4.746X10-6 

(2s\r2\nd)(nd\r-*\2s) 
6.150X10-2 
2.564X10~2 

1.279X10-2 
7.268 XIO"3 

4.517X10"3 

3.000X10"3 

2.091 X10"3 

1.523X10"3 

n*\(ndlf*l2s)\* 

1395.6 
1026.3 
877.8 
804.3 
762.5 
736.2 
718.6 
706.2 

n3\{nd\r-3\2s)\2 

1.976X10-3 

2.623X10"3 

2.910X10"3 

3.064X10"3 

3.147X10-3 

3.204X10"3 

3.235 X10~3 

3.284X10-3 

nz\(nd\r2\ls)\2 

2.622X10"3 

3.653 X10~3 

4.130X10"3 

4.385 XIO"3 

4.537X10-3 

4.634X10-3 

4.699X10"3 

4.746X10-3 

n*{2s\r2\nd)(nd\r-z\ 
1.660 
1.641 
1.598 
1.570 
1.549 
1.536 
1.525 
1.523 

the discussion of this section has treated bound excited 
states, it is readily extended to continuum states as 
shown previously.5,11 In numerical applications the 
nondiagonal higher order terms are calculated but they 
converge rapidly. 

III. SUMS OVER BOUND EXCITED STATES 

In later sections the BG theory is used to calculate 
the correlation energy among 2s electrons and other 
properties for Be. In using BG perturbation theory, it 
is necessary to sum over all excited states. When the 
continuum is considered, the sums are readily evaluated 
by numerical integrations as shown in K. I t is not obvi
ous that the sums over bound states may be handled so 
simply, however. One often includes just the first few 
bound states and assumes that the remaining contribu
tions are small. This is probably reasonable in many 
cases; however, it is preferable to sum over all bound 
excited states and this is now shown to be feasible. In 
the numerical work reported here it was found that 
matrix elements such as (mpnp \ v 12s2s) are proportional 
to n~zn for fixed m as n becomes large. This behavior 

11 H. P. Kelly and A. M. Sessler, Phys. Rev. 132, 2091 (1963) 
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is expected to hold true for other operators and for 
other atoms when the asymptotic potential is Coulombic 
as in this case. The explanation lies in the fact that <p2s 

lies much closer to the nucleus than <pnp for n large. 
When we compute <pn+iP there is very little change in 
the single-particle energy and the behavior of <pn+iP is 
very close to that of <pnp (except for normalization) in 
the region of space where (p2s is substantially nonzero. 
The principal change in the matrix element in going from 
n to n-\-1 then is due to the change in the normalization 
factors. 

I t is shown, for example, by Bethe and Salpeter12 

that for hydrogen-like atoms the behavior of the eigen-
functions for large principal quantum number n is 

TABLE IV. Numerical values in a.u. for D of Eq. (23) 
and for excitation matrix element. 

R-2b) 
Z\3'2 (2Zr)1 

(2/+l)!l 
1-

2rZ 

21+2 
(19) 

The potential used in Eq. (13) is asymptotically Coulom
bic and since <pnp for large n is located mainly in the 
asymptotic region of the potential, it is expected that 
the normalization of <pnp should contain the factor 
n~zl2 as does that of hydrogen. The numerical checks on 
this rule are given in Table I I I . When the product nz 

times matrix element squared has not completely 
reached its asymptotic value, a curve may be drawn to 
estimate the higher values and the limit. In perturba
tion theory calculations we consider terms of the form 

E E \{mpnp\v\2s2s)\2D~\ (20) 

where D is given by Eq. (18). The double summation 
presents no essential complication in the following 
discussion. As n in Eq. (20) becomes large, D approaches 
a constant value. This allows us to carry out the summa
tions of Eq. (20). For example, for fixed m we might 
carry out the sum from n-= 2 to n= 8 by explicit calcula
tion of the terms. Then from n—9 to approximately 
n= 15 we would calculate terms by using the n~3 rule 
for the matrix elements squared and we would make the 
necessary extrapolations to obtain accurate denomi
nators. For example, enp °c n~2. The remainder of the sum 
is obtained to a good approximation from 

C nr*dn=C/[2(7V/+1)2], (21) 
J Nf+i 

where Nf is the last n value calculated by discrete 
summation and 

C=lim nz | (mpnp | v 12s2s) 12D~ (22) 

For greater accuracy we may also use f (3) where f (s) 

12 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Systems (Academic Press Inc., New York, 1957), 
p. 18. 

C2a 

€2p 

EGort(2s,2s) 
4£eorr(2*; U) 
{2s2s\v\2s2s) 
(2p2p\v\2p2p)* (wj = ± l ) 
(2p2p\v\2p2p) (mj = 0) 
(2p2s\v\2p2s) 
(2p2p\v\2s2s)h 

-0.30942 
-0.17951 
-0.0439 
-0.00497 

0.34331 
0.28652 
0.30180 
0.30867 
0.0636315 

a One 2p state has mi — +1 and the other mi = — 1. 
b This term is negative for mi — ±1 and positive for mi=0. 

is the zeta function of Riemann13 given by 

In the calculations of the next sections N/ is typically 
15. This procedure may be carried out to any desired 
accuracy by calculation of a sufficient number of ex
cited states. The sums of Eq. (20) must be repeated for 
different values of m and an extrapolation made for 
m—^oo just as for n. 

IV. Be CORRELATION ENERGY FOR 
2s ELECTRONS 

In K it was found that almost all the contribution to 
2s~~2s correlations in Be came from excitations into 
/== 1 states. This calculation has been again made using 
BG theory but with the set of single-particle states of 
Eq. (13). Diagonal terms beyond second order are in
cluded in the "second-order" calculation by using the 
denominator D of Eq. (18). The nondiagonal third-
order and higher terms are also calculated. The states 
p and q in Eq. (18) are now the Hartree-Fock 2s states 
of Be. The term ECOVT(2s,2s) was found to be -0 .0439 
atomic units (a.u.) in K. The terms Ecorr(p, r^q) 
-\-Ecorr(r**pT q) give the total correlation energy between 
the 2s and Is shells which was calculated to be —0.00497 
a.u. in K. One a.u. = 27.21 eV. Most of the contribution 
to the 2s correlation energy will be shown to come from 
excitations into 2p states. The term EGOrT'(i,j) is the 
contribution to the correlation energy among Is elec
trons when at least one of the excited states coincides 
with i or j . For 2p excitations Ecorr' was calculated to 
be —0.00027 a.u. This is quite small relative to the 
other terms in Eq. (18) so Econfaj) is omitted. When 
both 2s electrons are excited into 2p states 

D= €2S+ e2s " €2p €2p~rEcol 

•(2s2s\v\2s2s) 
(2s,2s)+4:EGOTr(2s,ls) 

~(2p2p\v\2p2p) 
+ 2(2p2s\v\2p2s). (23) 

The numerical values are given in Table IV. Although 
the notation has so far been suppressed, excited states 

13 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam
bridge University Press, Cambridge, 1927), Chap. XIII, p. 265. 
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TABLE VI. Diagonal contributions to ECOTT(2s}2s) from p states.8 

(c ) 

FIG. 4. Changes in excited states due to nondiagonal interac
tions. (a) Hole-particle interaction, (b) Particle-particle interac
tion. (c) Two nondiagonal interactions. 

are labeled by mi and ms in addition to n and /. The angu
lar factors for matrix elements, which may be obtained 
from Condon and Shortley,14 affect (2p2p\v\2p2p) dif
ferently according to the mi values of the 2p excited 
states. When we write the sums over mi explicitly, 

EGorr(2s, 2s —> mp, np) = 21 (mpnp \ v \ 2s2s) | 2 / 

D(mi= d= 1 )+ | (mpnp \ v \ 2s2s) \ 2/D(mt= 0) . (24) 

The results of Eq. (24) are given in Table V for m==2 
and n variable. 

The sums over continuum states are readily per
formed as described in K. In the following term one 
excitation is into a bound state and one into the 
continuum 

]£ ECOTr(2s, 2s —> np, kp) 
k 

= - / dk\ (2s2s|v 1 npkp)12/D(ft), (25) 
T J o 

where 

- (2s2s | v 12s2s)+ (np2s \ v | np2s). (26) 

Lowest 
stateb 

2p 
3p 
4p 
Sp 
6p 
lp 
sp 
9p 

lOp 
lip 
Up 

00 

2} np 
n=13 

Sum of bound 
states0 

-4.3155X10-2 

-3.003 
-3 .89 
-9 .61 
-3 .36 
-1 .44 
-7 .10 
-3 .75 
-2 .16 
-1 .33 
- 9 . 0 

-4 .14 

X10"4 

xio-5 

X10"6 

xio-6 

xio-« 
xio-7 

xio-7 

xio-7 

XIO"7 

X10~8 

Continuum 
statesd 

-3.804X10-3 

-5.225 XIO"4 

-1.794X10-4 

-8.210X10-5 

-4.456X10"5 

-2.693 XIO"5 

-1.754X10-5 

-1.209X10-5 

-8.680X10-6 

-6.440X10~6 

-4.910X10-6 

XIO"7 -2.470X10"5 

Bound+continuum total: 
Continuum-- continuum states: 

Diagonal total 

Bound 
+continuum 

-4.6959X10"2 

-8.228 XIO"4 

-2.183 XIO"4 

-9.171 X10~5 

-4.792 X10~5 

-2.837 XIO"5 

-1.825 X10~5 

-1.247 XIO"5 

-8.900 XIO"6 

-6.570 X10~6 

-5.000 X10~6 

-2.510 XIO"5 

-4.8245X10"2 

-1.6827X10-3 

-4.9928X10-2 

a All energies are in a.u. Second-order and only diagonal higher order 
bound-state contributions are included. See Eq. (24). Sums over mi have 
been made. 

b One of the two excited states has this quantum number. The other state 
has a principal quantum number greater than or equal to this. 

0 The sum is over all bound excited states with principal quantum number 
greater than or equal to that at the left. In the first row the sum runs from 
2p to oo. In second row the sum runs from 3p to «o, etc. 

d Hole-particle and particle-particle interactions are included. 

Note that diagonal bound-state contributions are in
cluded. The continuum particle interaction with the 2s 
hole is treated as in K and similarly for the particle-
particle interaction. That is, we consider 

anp(k)=— / dkf{2sk\v\2sk')D~l{k') 

and 

tnp\R)~ 

X {npkf | v \ 2s2s) (npk \ v 12S2S)-1 (27) 

dk'(npk\v\npkf)D{kf)-1 

X (npk' | v 12s2s) (npk \ v \ 2s2s)~ (28) 

In Eq. (28) there is also a sum over mi. As found previ
ously in K for two continuum excitations, both anp(k) 

TABLE V. Bound-state contributions to £corr involving 2p states, and tnp{k) were almost constant, with a very small 
— dependence on k. The ladder or particle-particle inter

actions and the continuum particle-hole interactions 
are then summed by multiplying Eq. (25) by the factor 

Ecorr(2s2s —> 2pnp) in a.u. 

2 
3 
4 
5 
6 
7 
8 
9 

10 

Total 

-0.037244 
-0.003781 
-0.001011 
-0.000423 
-0.000219 
-0.000129 
-0.000082 
-0.000056 
-0.000040 

-0.000170 

-0.04316 

(l — anp(k) — tnp(k))~ (29) 

14 E. U. Condon and G. H. Shortley, The Theory of Atomic 
Spectra (Cambridge University Press, Cambridge, England, 1957), 
p. 178. 

where an average value for k is used. The term tnp dif
fers by 4 % for np(mi=dzl) and np(mi=0). 

For n= 2, a2p(0A) = 0.3385, t2p(0A) = 0.323(m= db l ) , 
and *2p(0.4) = 0.337 (wi=0). The factor of Eq. (29) 
is then 1.0109, a small correction. 

Contributions to the 2s correlation energy from the 
various excited 1=1 states are given in Table VI. The 
principal contribution is seen to come from 2p 
excitations. 

Some typical nondiagonal terms are given in Fig. 4. 
Changes from one continuum state to another have 
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already been included in Table VI. All calculations are 
made with the shifted denominator of Eq. (18). All 
nondiagonal terms with a significant contribution to 
EQOrr(2s,2s) are listed in Table VII. The total contribu
tions of Tables VI and VII are added to give ECOTT(2s,2s) 
X(/=l)=—0.04357 a.u. In the previous calculations 
of K, ECOTr(2s,2s)(l=: 1) was found to be -0.04256 a.u. 
The value calculated here is believed to be a much more 
accurate result than the calculation of K. If the new 
value for ECOvr(2s,2s)(l= 1) is added to the other contri
butions to the total correlation energy calculated in K, 
the total correlation energy of Be is changed from 
— 0.091 to —0.092 a.u. which improves agreement with 
the value —0.0953 a.u. deduced from experiment. 

The interaction potential between the external charge 
Z' at r' and the atom is given by 

Fex t= - Z ' £ £ W/r'^PkicosOi), (32) 

where the polar axis has been chosen along the lien 
between the nucleus and r' and the contant, spherically 
symmetric part of Fext has been omitted. The perturbed 
wave function 

¥ = t f 0 + Z ' £ . ^ ^ V / ^ + 0 ( Z / 2 ) . (33) 

The dipole polarizability is 

V. POLARIZABILITIES AND SHIELDING FACTORS 

A. Dipole Polarizability for Be 

An atom perturbed by an external charge Z' becomes 
polarized; and the effect of the external electric field 
on the atom depends upon the atomic dipole polariza
bility a^ An extensive discussion of atomic polariza-
bilities and shielding factors has been given by 
Dalgarno15 and his notation is used in this section. 

The unperturbed Hamiltonian is 

H~-
N / W 

*=l\ 2 TiJ i<3 
(30) 

Atomic units are used in all formulas. The ground-state 
wave function SPo satisfies16 

(H-E)*0=0. 

TABLE VII. Nondiagonal terms in ECOTr(2s,2s) for /=1 . 8 

2p2p -> 2p2ph 

2 (2^2^ -> 2pnp) 
71=3 

2p2p ~> 2pkp 

2 (2p2p -> 3pnp) 

2p2p -» 3pkp 

2p2p —> kpkp 

4.058X10-3 

2.016X10"4 

-2.655X10-4 

2.45 X10~4 

4.11 X10-4 

3.66 X10~4 

1.399X10"3 

Nondiagonal total 6.355X10" 

• Hole-particle diagrams and ladder diagrams are included. 
*> This includes 2p+(mi = ±l)2p-(mi ==F 1) -* 2p+(mi - ±l)2p-(mi = dbl) 

2p+(tni = ±\)2p~(?ni ==F 1) <-> 2p+(mi =0)2p-(mi =0). 
• This includes sum tn> n. 

16 A. Dalgarno, Advan. Phys. 11, 281 (1962). 
16 Note that ^o is unperturbed with respect to interactions with 

the external charge Z . However, ^ 0 includes correlation effects 
and is perturbed with respect to the Hartree-Fock solution. 

aa=2<¥o|E'*Pi(cosfc)|¥i<,>>/<¥o|*o>, ' (34) 

where Z' is assumed small. The wave function ^i ( 1 ) 

then is the function ^o perturbed once by the term 
— V\ where 

Uk=T,r%*Pk(cosOi). (35) 

In our case the function \&o is not known at the outset; 
so we start from the Hartree-Fock 3>o and use BG 
theory to calculate \£. 

The perturbation is 

# ' = £ Jr.—ryj-1—S Vi-Z' £ Uk/rW. (36) 

(31) The BG linked cluster result is derived as usual2 and 

* = Z ( H') $o, 
L \E0-Ho I 

(37) 

where £ L indicates that we sum over all linked terms.2 

The function ^ 0 is given by the sum of all terms of ^ 
in which there are no interactions involving TJ%. The 
term ^r

i
(1) is the sum of all terms of ̂  in which — Ui 

acts once and only once, Z'/r'2 being factored out. ^ 0 
obtained from Eq. (37) is not normalized to unity. How
ever, in the numerator of Eq. (34) we may factor the 
disconnected terms into a product of terms involving 
Ui times all other terms. If we neglect the exclusion 
principle, the second factor is (^01 ̂ o) and cancels the 
denominator. This factorization proceeds as in the deri
vation of the linked cluster result. However, the ex
clusion principle must be considered in this factorization 
and it will be shown to have a significant effect for small 
systems. 

The terms contributing to Eq. (34) may be repre
sented by diagrams as in Fig. 5. The ordering of inter
actions from the bottom to the top of the diagram cor
responds to interactions proceeding from right to left 
in Eq. (34). The interaction lines labeled DP for dipole 
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FIG. 5. Lowest order terms contributing to the dipole polariz-
ability aa. The interaction labeled DP refers to the dipole polariz-
ability operator r cos0. (a) Second-order term, (b) and (c) are 
third-order terms with one correlation interaction. There is also 
the term obtained by inverting (c). (d) Hole-particle interaction 
diagram which does not occur when the single-particle states are 
calculated as in this paper, (e) Fourth-order diagram which is an 
iteration of the diagram (b). 

polarizability indicate interactions through the operator 
Ui. The diagrams are calculated by the usual perturba
tion theory rules2 and multiplied by — 2 to give «<*. The 
factor 2 comes from Eq. (34) and (—1) from Eq. (36). 
The lowest order contribution to ad is positive; it is 
shown in Fig. 5 (a) and has the value 

ad(2s-^np)=-4:\(2s\rcos6\np)\2/(e2S-enp). (38) 

Equation (38) includes a factor 2 because there are two 
2s electrons. Transitions to continuum states are given 
by 

Zod(.2s-*kp) 
k 

F 
• J o 

dk\(2s\r cosd\kp)\2/(e2s-k
2/2), (39) 

where the continuum states are normalized so that 

Pk(r) - sin(*f + (1/k) bi2kr+S) (40) 

as r—>oo and 2 ^ = (2/TT) Jl°° dk as shown in K. The 

TABLE VIII. Dipole polarizability in second order.8 

ft ad 

2 
3 
4 
5 
6 
7 
8 

2 
n=9 

continuum 

2s total 

*1 A»«10-»cm: 

(25 -* np) A 3 

11.9371 
0.01213 
0.00939 
0.00513 
0.00298 
0.00187 
0.00124 

0.00393 

0.17049 

12.1443 A 3 

% 

n cxd(is —> np) A 3 

2 
3 
4 
5 
6 
7 
8 

n-9 

continuum 

Is total 

0.001091 
0.000202 
0.0000753 
0.0000362 
0.0000202 
0.0000124 
0.0000081 

0.0000257 

0.005848 

0.007319A3 

second-order contribution to ad from Is electrons is ob
tained by replacing 2s by Is in Eqs. (38) and (39). 
Numerical results for ad in second order are given 
in Table VIII. The validity of the n~z rule for 
| (2s | r cos01 np) |2 may be checked in Table I I I . I t is 
interesting to note that almost the entire contribution 
to ad comes from 2p excited states and that excitations 
of Is electrons contribute negligibly. The second-order 
ad is 12.15 A3 as compared with 4.54 A3 obtained by 
Kelly and Taylor17 in a second-order calculation using 
the set of Hartree-Fock states described in K in which 
all excited states are in the continuum. I t was pointed 
out17 that this second-order calculation is equivalent to 
the uncoupled Hartree-Fock approximation of 
Dalgarno.15 In higher order calculations using this 
continuum set it is necessary to calculate the diagram 
of Fig. 5(d) and higher iterations. This type of diagram 
was called a second class EPV diagram in K. I t arises 
from the fact, that for this set the interactions of an 
excited particle with the Hartree-Fock potential do not 
cancel the interactions with the occupied unexcited 
states. This is the analog of Fig. 1(d). 

In K these diagrams were found to be comparable in 
size to the second-order term and of the same sign. In 
the calculations of this paper the single-particle states 
were calculated so that interactions of excited states 
with the potential are canceled by interactions with the 
occupied unexcited states when there is only a single 2s 
excitation. Another way to look at this problem is to 
note that all terms of the type of Fig. 5(d) have been 
summed and need no longer be considered when the 
states of this paper are used. Since these terms are all 
of the same sign as the second-order term, it is under
standable that the second order result of this paper 
should be much larger than that reported in KT. 

The third order terms of Figs. 5(b) and (c) which 
reduce the second-order result are found to be large. 
This is expected since they differ from the second-order 
term by one / = 1 correlation interaction, and in Sec. IV 

D P * - -

fc) (d) 
FIG. 6. Fourth-order diagrams which modify single-particle 

excitations. Diagrams (a), (c), and (d) are rearrangement diagrams 
discussed in Ref. 18. 

17 H. P. Kelly and H. S. Taylor, J. Chem. Phys. 40, 1478 (1964), 
hereafter referred to as KT. 
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Cg (g Qf • 
(a) (b) (c) 

OS) && 
(d) (e) ( f ) 

FIG. 7. Basic fourth-order diagrams contributing to the dipole 
polarizability ad are given by diagrams (a), (b), (c), (d), and (e). 
Diagrams (a), (b), and (f) may be inverted. In diagrams (b) and 
(d) the first DP interaction may also occur on the other particle 
line. A fifth-order diagram modifying (a) is given by (f). Similar 
diagrams modify (b) and (c). 

these correlations were large. I t is desirable to include 
as many higher order effects as possible when the basic 
third-order diagrams are calculated. This is achieved 
by first considering modifications to the single-particle 
excitations shown in Figs. 6(a), (b), (c), and (d). These 
modifications will be shown to be included by an effec
tive shift in the energy denominators for single-particle 
excitations and they are found to be small compared to 
other effects. The modification which is numerically 
largest is shown in Fig. 5(e). That is, whenever we have 
a single-particle excitation we include all correlation 
interactions which interchange the excited and unex-
cited 2s electrons. Due to the dominance of excitations 
into 2p states as seen from Tables I I and VI, it is possible 
to sum exactly the principal part of this modification 
by considering the geometrical series 

MF=l+((2p2s\v\2s2p)/(e2s- e2p+d))+ • > • 

= ll~-(2p2s\v\2s2p)/(e2s-~e2P+d)-yi. [ } 

The term d is due to the modifications of Fig. 6. When
ever there is a single excitation into the state 2p, the 
term is multiplied by MF. In Fig. 5(b) for m=2 and 
^7^2, we multiply by MF and have included all dia
grams like that of Fig. 5(e) to all orders. If we multiply 
the diagram of Fig. 5 (a) by MF then we must be careful 
not to include n—m—2 in Fig. 5(b) as this is already 
included in MF. In these calculations, MF=0.696. 
When the diagram of Fig. 5 (c) is calculated, the denomi
nator D of Eq. (18) is used to account for higher correla
tion effects. The nondiagonal terms discussed in Sec. I l l 
must also be included. When m—2y this diagram is 
multiplied by MF. The inverted diagram is numerically 
identical. 

Modifications due to the diagrams of Fig. 6 are now 
considered. Diagrams (a), (c), and (d) are "rearrange
ment" diagrams discussed by Brueckner and Goldman.18 

18 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207 
(1960). 
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Diagrams (c) and (d) result from the linked cluster 
factorization and may be added to give the negative 
product of the second-order term for ad and the second-
order correlation energy term. Higher order diagrams 
like (c) and (d) give additional factors of correlation 
energy terms and the result is a geometrical series which 
may be summed to give the second-order term for ad 
with the shifted denominator10 

D= 62s- 62P+ECOrr(2s,2s)+2EGOvr(2s,ls). (42) 

Calculations of 6(a) and (b) were made for n=nf~2 
as 2p excitations are dominant. The ratio of diagrams 
(a) and (b) to the second-order diagram of ad estab
lishes the ratio of terms in a geometric series which is 
also summed to give a shifted denominator. In calcu
lating (b), m and w! are the possible excited bound and 
continuum states consistent with the rules for allowed 
angular momenta of single-particle states in Coulomb 
matrix elements.14 That is, we may have mp tn's, 
mpmfdj md?nfpj etc. In calculating 6(b), only s, p, 
and d states were considered. The shift in Eq. (42) due 
to diagrams like 6(c) and (d) is —0.0465 a.u. However, 
this number is largely canceled by the shift due to dia
grams like 6(a) and (b) and the net shift is only —0.0156 
a.u. For comparison, e2s— €2*,= —0.1299 a.u. Also, this 
effect for third-order terms in this case tends to cancel 
that for second-order terms. The second- and third-order 
diagrams were calculated with the modifications just 
described to account for iterations of certain terms 
beyond third order. The result was ad= 5.569 A3. 

In fourth order, new types of diagrams enter and 
examples are shown in Fig. 7. We may note that we have 
now included terms in which the correlations and D P 
interactions have assumed all possible relative positions. 
Diagrams 7(a), (b), and (f) may also be inverted and in 
7(b) and (d) the first D P interaction may occur on the 
other particle line. When we have a single 2p excitation, 
we multiply by the factor MF of Eq. (41). When the 
diagram begins or ends with a single excitation as for 
7(a), (b), and (c), there is also the modification of the 
type shown in 7(f) which modifies 7(a). Numerical 
calculations of the diagrams of Fig. 7 are given in Table 
IX. Excited bound and continuum states were included 
for/•=(), 1, and 2. 

The factor which results from the normalization 
(M>o | "^o) in the denominator of Eq. (34) for ad must be 

TABLE IX. Contributions to ad from diagrams of Fig. 7.a 

Diagram Value in A3 

a 0.8484 
b 0.4257 
c 0.5957 
d 0.3383 
e 0.3389 
f -0.4232 

Total 2.1238 

* 1 A =10~8 cm. 
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(a) (b) 
FIG. 8. Disconnected diagrams which factor when added. States 

p and q must be different from r and the excitations of p and q 
must differ from k because of the exclusion principle. Diagrams of 
this type give the factor of Eq. (45). 

included. This effect of this factor is reduced when we 
consider the higher order terms of Fig. 8. When 8(a) 
and 8(b) are added, the disconnected parts factor into 
the product ad in second order (a<2(2)) times the lowest 
order contribution of p, q to the correlation part of the 
normalization which is 

Nm(P,q) = Z\(pq\v\kk^/n\ 

electric field at the nucleus due to Zf is defined as the 
dipole shielding factor &<,. 

fto = « * | £ P i ( c o s ^ ) A i
2 | ^ ) / ( ^ | ^ ) ) ( Z 7 r , 2 ) ~ 1 

= 2 ( * o | £ P i C c o s f c V r ^ w y ^ o l t f o ) , (46) 

where Z ' is assumed small and terms of second and higher 
powers of Z' are neglected. The formula for /?«, differs 
from Eq. (34) for ad only by the replacement of the 
second interaction U\ by the shielding term 

S i = £ P i ( c o s f t ) / t f . (47) 

(43) 

Therefore, ff^ may be calculated analogously to aj} the 
second one-body interaction being Si. 

The formulas for 8^ in second order are 

< t f o | * o > = l + E M » ( M ) . (44) £ ft, (2s -4 £ {2s\r~2 cosS\np) 
n=2 

Although the nondiagonal terms have not been ex
plicitly written in Eq. (43), they are assumed included 
in Nm(p,q). The diagrams like those of Fig. 8 and 
the normalization (^ol^o) - 1 combine to multiply 
ad(2) (j _> £) by t k e factor 

( 1 + L Nm'(p,q))/(l+i: Nf*(P,q)). (45) 
pq^r pq 

The sums pq extend over all unexcited states except 
in the numerator where p and q must not equal r be
cause of the exclusion principle. The prime in the 
numerator indicates that the excited state k is not to be 
included in calculating Nm(p,q). The higher order dia
grams for ad are treated similarly. Only connected 
terms are then retained, the corrections from discon
nected terms being contained in Eq. (45). For a large 
system, Eq. (45) becomes effectively one. However, 
for a small system such as Be, the restrictions on the 
sum in the numerator of Eq. (45) may have an impor
tant effect. Calculations of the normalization terms 
Nm resulted in Nm{2s,2s) = 0.1107, Nm(ls,ls) = 0.0028, 
and Ntn(ls,2s) = 0.000125. In calculating <^o|^o>, 
4:Nm(ls,2s) is included to account for the four Is— 2s 
pairs. The total value for ad before normalization is 
7.69 A3 and after normalization becomes 6.93 A3. For 
Be the normalization effect is approximately 10%. 
This correction may be especially large for Be due to the 
low-lying 2p excitation which enhances the effect of 
D2 in Eq. (43). 

B. The Dipole Shielding Factor 

When an external charge Zf is placed at r', the electric 
field at the nucleus due to the electrons divided by the 

and 
X (€2,- enp)-

1(np\rcosQ\2s) (48) 

/•OO 

£ ft* (2s - » kp) = - (8/TT) / dk (2s | r-2 cosfl | kp) 
* Jo 

X(e2s-k
2/2)-1(kp\rcosd\2s). (49) 

The Is contributions are obtained by replacing 2s by 
Is in Eqs. (48) and (49). These equations are analogous 
to Eqs. (38) and (39) for <*& The second-order contribu
tions to foo given in Table X add to 4.296 which is in 
poor agreement with the theoretical value 1.00,19 and 
so it is necessary to consider the higher order terms. 
There are terms of the same type as considered for aa 
and shown in Figs. 5, 6, and 7. In addition there are 
now important contributions from the Is electrons. This 
is not surprising as #» involves matrix elements of r~2 

TABLE X. Second-order contributions to the 
dipole shielding factor /?«». 

n 

2 
3 
4 
5 
6 
7 
8 
OO 

X 

continuum 
2s total 

0»(2s-*np) 

3.88977 
-0.02783 
-0.01276 
-0.00612 
-0.00337 
-0.00205 
-0.00134 

-0.00422 

-0.01766 

3.814 

n 

2 
3 
4 
5 
6 
7 
8 

s 
%=9 

continuum 

Is total 

P»(ls-+np) 

0.03267 
0.00635 
0.00240 
0.00116 
0.00065 
0.00040 
0.00026 

0.000829 

0.4373 

0.482 

19 R. M. Sternheimer, Phys. Rev. 96, 951 (1954). 



M A N Y - B O D Y P E R T U R B A T I O N T H E O R Y A P P L I E D T O A T O M S B907 
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np 1S(}^ 
»D • DP 2s>f Anp 

—•DP 
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np V — * D S 

• DP 

(b) 

TV 

K/r 
/C^--*n 
— - • D P 

Is* 

2s\ 

AT »DS 

' \kp 

/np 
V .DP 
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FIG. 9. (a) Second-order diagram for the dipole shielding factor 
(3oo. (b), (c), (d), and (e) are third-order diagrams involving Is and 
2.? states. In diagrams (d) and (e) the two hole states must have 
parallel spins. 

which emphasizes the inner atomic regions. In the most 
important of these Is—2.? terms shown in Fig. 9 the 2s 
electron contributes to the r matrix element and the Is 
electron to r~2. The line labeled DS represents the inter
action with the shielding operator S±. Diagram (c) 
may be inverted except that the DS interaction must 
appear above DP. Diagrams (b) and (c) are similar 
to 2s— 2s third-order diagrams except that one of the 
hole states is labeled Is. In diagrams (d) and (e) the 
hole states must have parallel spins. 

When diagram 9(b) was calculated with the factor 
MF of Eq. (41) the result was -0 .592 . The sum of 
9(c) and its inverted form was also —0.592. Diagram 
(d) was calculated to be —0.0489 and (e) was —0.126. 
Additional modifications to these diagrams come from 
the fact that when there is a single Is excitation, the 
interactions with the potential do not exactly cancel 
interactions with the occupied unexcited states. This 
was found to give approximately a 10% increase to 
diagrams like (b) and (e). This increase was approxi
mately canceled by inclusion of higher order Is—Is 
interactions which modify a single Is excitation in the 
same way that the single 2s excitation in Fig. 5(a) is 
modified by 5(b) and (c). 

The result of calculating the modified second- and 
third-order diagrams involving two 2s electrons was 
found to be 1.248. The basic diagrams are shown in 
Figs. 5(a), (b), and (c) except that the topmost inter
action is now DS rather than DP. The appropriate modi
fications to the basic diagrams were discussed in Sec. 
IV A. Similar calculations involving the two Is electrons 
gave the result 0.438. Calculation of the Is— 2s diagrams 
of Figs. 9(b), (c), (d), and (e) gave the result —1.189. 
This number includes the modifications discussed above 
and a very small contribution from interations of the 
basic diagrams. The modified total result through third 
order is then 0.498. 

The final result was obtained by considering higher 
order diagrams of the type shown in Fig. 7 with DS 

replacing the upper D P and by including the normali
zation factor of Eq. (45). The higher order diagrams 
included not only the basic structures of Fig. 7 but also 
the possible additions to them by adding on Is—2s 
interactions in the same way that diagrams in Figs. 
9(b), (c), (d), and (e) may be considered as additions 
to the basic diagram of Fig. 9(a). Before normalization 
the higher order terms contributed 0.532, giving a total 
1.030. After normalization the total dipole shielding 
result was 0.972. The normalization factors significantly 
affected (by approximately 10%) only the terms in 
which there was at least one 2s electron excited. 

C. Quadrupole Polarizability 

The quadrupole polarizability is defined by 

<*ff=2<¥o|£ ^ ^ ( c o s ^ l ^ ^ V ^ o l ^ o ) . (50) 

The term '$r
1

(2) is defined by Eq. (33) and is obtained 
from BG theory by collecting all the terms of & given 
by Eq. (37) in which the perturbation — U2 acts once 
and only once. The calculation of aq proceeds in the 
same manner as that of ad except that the operator 
V\ is replaced by U* 

The second-order formulas are 

(51) 

(52) 

The angular integrations contribute a factor \ on the 
right-hand side of Eqs. (51) and (52). Both equations 
contain a factor 2 for two 2s electrons. The Is terms are 
obtained by substituting Is for 2s in Eqs. (51) and (52). 

The results of the second-order calculations are given 
in Table X I and the total second-order result is 15.09 A5. 

TABLE XI. Second-order contributions to the 
quadrupole polarizability.a 

2 aq(2s-
w=2 

]T ag(2s-
k 

•» nd) = 

->kd) = 

-4£ |<2s | f lP 2 (cos0)M>| 2 

n=2 

X ( e 2 s — end)~'1, 
8 r00 

/ ^|(2s|f2P2(cos0)|M)| 
TT Jo 

X(e2s~-k"/2)-K 

n a^ 

3 
4 
5 
6 
7 
8 
9 

10 

S 

continuum 

Is total 

j(2s-*nd) A5 

6.7760 
1.9161 
0.8059 
0.4184 
0.2467 
0.1583 
0.1079 
0.07701 

0.3218 

4.2620 

15.0901 A5 

*1 A5 = i(r*° cm$. 

n 

3 
4 
5 
6 
7 
8 
9 

10 

•v 

continuum 

Is total 

aq (Is —> nd) A5 

6.889X10"7 

4.028 X10-7 . 
2.326X10~7 

1.427X10-7 

9.293 X10~8 

6.355 X10~8 

4.525X10"8 

3.330X10"8 

L444X10-7 

0.000609 

0.000611 A5 
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TABLE XII. Second-order contributions to the 
quadrupole shielding factor j * . 

n -> 

3 
4 
5 
6 
7 
8 
9 

10 

X 
7 1 = 1 1 

continuum 

2s total 

'«>(2s-*nd) 

0.19430 
0.07383 
0.03537 
0.01968 
0.01208 
0.00796 
0.00552 
0.00399 

0.01928 

0.51589 

0.88790 

n 

3 
4 
5 
6 
7 
8 
9 

10 

2 
»=ii 

continuum 

1$ total 

Y«,(ls—*nd) 

2.546X10-5 
1.514X10-5 
8.778X10-6 
5.385X10-6 
3.517X10-6 
2.405X10-6 
1.719X10-6 
1.252X10-6 

6.888X10-6 

0.16987 

0.16994 

The contribution from Is terms is negligible. The third-
order terms correspond to those in Figs. 5(b) and (c) 
for ad including the inverted form of 5(c). The interac
tion lines labeled D P now are labeled QP and correspond 
to the interaction U% The excited states are nd and kd. 
Since the correlations between two 2s electrons are given 
almost entirely by excitations into p states,5 the third-
order terms for aq were expected to be much less im
portant than they were for a(i. This was found to be 
true; the third-order terms contributed —1.034 A5, 
giving a total result 14.06 A5 for second- and third-
order terms. Fourth-order terms were not calculated 
and the normalization factors were omitted for con
sistency as they correspond to fourth-order and higher 
terms. Most fourth-order terms are expected to increase 
the value for aq, and aQ is reduced by the normalization 
factors so there should be some cancellation between 
these two effects. However, since 1=1 states may enter 
into the fourth-order terms, the fact that third-order 
terms are small does not necessarily imply fourth-order 
terms are also small. 

D. The Quadrupole Shielding Factor 

The quadrupole shielding factor y^ is defined as the 
change in the gradient of electric field at the nucleus due 
to the electrons divided by the gradient of electric field 
at the nucleus due to the external charge Z\ 

7 * = 2 < ¥ o | E ^ - ^ ( c o s ^ l ^ x ^ V ^ o l ^ o ) . (53) 

The second-order terms are 

£ Too(2s ->nd)=j:-4<2s | r~*P2(cos0) | nd) (e2s- end)-
1 

X(nd\r2P2(co$d)\2s), (54) 

8 r 
£7«(2* -* fc f ) = —- / dk{2s\r~zp2(co$e)\kd) 

& TV J 0 

and similarly for excitations of Is electrons. The second 
order contributions to y^ are given in Table XII . Both 
Is and 2s contributions are now significant. More than 
half of the total result 1.058 comes from continuum 
states; this is not surprising since the wave function for 
nd states is generally far from the origin due to the 
centrifugal barrier and so the r~3 matrix elements are 
small. However, the continuum states have sufficient 
energy to overcome much of the barrier. 

The third-order 2s—2s terms which were calculated 
correspond to the third-order correction terms for «d 

shown in Fig. 5. However, the bottom interaction is now 
QP and the top interaction is through the quadrupole 
shielding (QS) term r~3P2(cos0). Excited states have 
1=2. Third-order terms involving Is— 2s interactions 
of the types shown in Fig. 9 but with changes to QP, 
QS, and 1—2 excitations were also calculated. Correc
tions were made which account for the fact that for Is 
excitations the interactions with the potential do not 
cancel interactions with occupied unexcited states. This 
effect gave a 7% increase to the terms with Is excita
tions. The contributions from third-order 2s— 2s terms 
was calculated to be —0.144 and from Is— 2s terms 
— 0.163. The Is—-Is terms were small. The final result 
of these calculations is 0.751. The fourth-order and 
higher terms were not considered in calculating y^ 
and it is possible that they might contribute significantly 
since excitations into / = 1 states are now possible. Very 
rough calculations of some fourth-order terms indicated 
that yoo might increase by as much as 20% and aq 

change less. Any increase, of course, would be partly 
offset by the normalization factor. I t is possible that 
the second-order result could turn out to be in better 
agreement with experiment than the result including 
third-order terms. 

(Note added in proof. The results of this section are in 
good agreement with those of Professor A. Dalgarno 
who has used the coupled Hartree-Fock approximation 
for Be. An analysis of the coupled method indicates that 
it includes the second- and third-order diagrams of this 
section and higher iterations of these basic diagrams, 
and so the coupled method actually includes some of the 
correlation effects. I am grateful to Professor Dalgarno 
for forwarding his results prior to publication.) 

VI. OSCILLATOR STRENGTHS 

The oscillator strength j n i
z for a transition between 

an initial state i and an excited state n is given in atomic 
units by20 

/„»•*= 2coni | (n | Z0p | i) | 2 , (55) 

where Zop=^Lj=iNz3\ The energy difference between 
states n and i is given by <ont- in a.u. The ground state of 
Be is (Is)2(2s)2 *S and transitions are calculated to ex
cited states (ls)2(2s)(np) lP which may be written in 

X (€u-W/2)-l{kd\t*P2(cose) 12s), (54a) 
20 H. A. Bethe, Intermediate Quantum Mechanics (W. A. Benja

min, Inc., New York, 1964), Chap. 13, p. 147. 
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TABLE XIII. Excitation energies in a.u. from 
(2s)*lSto (2s)(np)lP. 

11 

2 
3 
4 
5 
6 
7 
8 

Ionization limit 

COni* 

0.1935 
0.2467 
0.2749 
0.2877 
0.2946 
0.2986 
0.3012 
0.3094 

COnih 

0.1939 
0.2742 
0.3063 

0.3426 

a Calculated from Eq. (58). 
b Experimental values obtained from Ref. 21. Only values up to « = 4 

were listed. 

second quantized notation 

| 2snp lP)= 2-vz(V2S++Vnp-+-ms-+Vnp++) 10), (56) 

when correlations in these states are neglected. The 
notation 2s+, np~ indicates 2s electron with spin up, 
etc. The state |0) is the "core" state (ls)21S. The 
operators T/+ satisfy the usual Fermi-Dirac anticommuta-
tion relations.2 The excitation energy 

ojni^ (2snp ^ 1 #1 lP)-((2s)21S\H\(2s)'ilS). (57) 

If we use the ground-state Hartree-Fock solution for 
(2sYlS and Eq. (56) for (2s)(np)lP with the np 
single-particle orbitals determined by Eq. (13), 

o>ni= e2p— e2s+ (2snp | v I np2s). (58) 

The Is and 2s orbitals used in (2s) (np) 1P are the same 
as for (2s)2 XS. 

Excitation energies calculated from Eq. (58) are 
given in Table XIII and are compared with the ob-
observed energies obtained from the Charlotte Moore 

1 

vr ' 

t 

k2s+ 

i 

*np~ 

~ s + ^ -
'2s-

np+ 

» t 

^ 

2 s -

(a) 

A 1 2s+ 

f 2 s + 2s_f 

+ * 

(b) 

2s 

np+ mp**̂  

F I G . 10. Diagrams contributing to oscillator strength matrix 
elements, (a) Hartree-Fock approximation, (b) Correlation terms. 
These diagrams differ from the usual diagrams of Ref. 2 in tha t 
bo th hole and particle lines are directed upwards. T h e lines a t the 
bot tom of the diagrams represent single-particle s tates occupied 
in the initial s ta te i. Lines a t the top of the diagram represent 
single-particle s tates occupied in the finaj s tate p, 

2s* 

Anp~ 

F I G . 11. Higher order 
diagrams contributing to 
oscillator s t rength matr ix 
elements, (a) and (b) are 
disconnected diagrams, (c) 
Transit ions (2s)2 tf -> (ns) 
X (2p) lP arejpossible when 
correlations among the two 
2s electrons are included.* » 

jnp" # . _ _ _ 

L 2Sy___y2s 

(b) 

t3s 

*2p 2p 
m 1 

42s 2s | 

( C ) 

Tables.21 The discrepancy between calculated and ob
served values increases with the excitations and is 
mostly due to omission of correlation corrections for 
the calculated energies. When a 2s electron has been 
raised to a highly excited state it is expected to have 
little correlation energy with the remaining 2s electron. 
If the 2s— 2s correlation energy of the ground state is 
included with the ionization limit calculated from Eq. 
(58), the result is 0.353 a.u. which improves agreement 
with the observed value 0.343 a.u. 

When the oscillator strengths are calculated in the 
first approximation, 

fnt*=403ni\(np\z\2s)\2. (59) 

This approximation for the matrix elements (n \ ZoP \ i) 
is illustrated by diagram (a) of Fig. 10. Unlike the usual 
many-body diagrams, both particle and hole lines point 
upwards; the lines at the bottom of the diagram cor
respond to the initial unexcited states of i and the lines 
at the top correspond to the unexcited single-particle 
states of the final state n. The ground-state Hartree-
Fock determinant i is connected to each of the excited-
state determinants in the linear combinations (56) 
through the matrix element (np \ z \ 2s). It is also desir
able to include the effects of correlations among the two 
2s electrons in the ground state and these are represented 
by Fig. 10(b). The contribution to (n\Gop\i) from dia
grams (a) and (b) together is 

(n\Z0p\i)=^2((np\z\2s)+Y:(2s\z\mp)D~1 

m 

X(mpnp\v\2s2s)). (60) 

21 A tornic Energy levels, edited by C. E. Moore, Natl. Bur, Std. 
Circ. No. 467 (U. S. Government Printing Office, Washington, 
D. C.? 1949), Vol If 
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TABLE XIV. Oscillator strengths for transitions (2s)2 *S - » I m p lP. 

_n /wi»(HF)» /ni2(corr)b 

2 2.0293 1.2540 
3 0.00541 0.01676 
4 0.00530 0.01013 
5 0.00318 0.00549 
6 0.00194 0.00321 
7 0.00125 0.00202 
8 0.00084 0.00135 

2 0.00295 0.00467 
n=9 

a Calculated from Eq. (59) using Hartree-Fock single-particle states. 
b Ground-state correlations are included in these values. 

The denominator D is calculated by Eq. (18) to account 
for higher order terms and account is also taken of non-
diagonal terms as explained in Sec. IV. There is still 
the normalization correction to be considered because 
the correlated ground state is obtained by BG theory 
and in Eq. (55) it is assumed that states n and i are 
normalized to unity. Most of the normalization correc
tions come from 2s electrons and the very small effects 
from Is contributions to the normalization are essenti
ally canceled by terms of the form shown in Fig. 11(a). 
A more detailed analysis of this point is given later in 
this section. Oscillator strengths calculated by Eq. (59), 
using single-particle Hartree-Fock states of Eq. (13), 
are compared in Table XIV with those calculated with 
correlation and normalization corrections. The ob
served excitation energies listed in Table X I I I were used 
and extrapolations were made to obtain higher excita
tion energies. The values in Table XIV may be compared 
with the results of Altick and Glassgold22 who used 
Hartree wave functions and employed the methods of 
the random-phase approximation.23 Their oscillator 
strength for the n=2 transition is 2.34 using Hartree 
single-particle states and 1.71 including correlations by 
the random-phase approximation. For the higher levels, 
their Hartree oscillator strengths are larger than the 
Hartree-Fock values listed here but their correlated 
values are lower than the Hartree-Fock values of the 
present calculation. 

I t is of interest also to compute the oscillator strengths 
of Is excitations to bound excited states and those for 
Is and 2s transitions to the continuum so that we may 
evaluate the Thomas-Reiche-Kuhn sum rule.20 

E/»<* = # . (61) 
n 

When Is —» np or Is —> kp transitions are calculated, 
terms of the form shown in Fig. 11(b) should be in
cluded. These account for correlations among the two 
unexcited 2s electrons. These correlations should also 
be included in the normalization for both the ground 
state i and excited state n. Because the particles in 

22 P. L. Altick and A. E. Glassgold, Phys. Rev. 133, A632 (1964). 
23 K. Sawada, Phys. Rev. 106, 372 (1957). 

excited states are propagating in the presence of differ
ent unexcited states above and below the z interaction, 
the denominators as given by Eq. (18) are different in 
these two cases. The correlation part of Fig. 11(b) is 

\(2s2s\v\kk')\2/DnDi, (62) 

where D{ is the denominator for (Is)2 occupied and Dn 

is the appropriate denominator when l s + and np~ are 
occupied. For Is transitions, Eq. (55) then becomes 

fniz=2^n4(n\Z0p\i)\o
2^+i:,\(2s2s\v\kk/)\2/DnDi)

2 

Xl(l+Y.\{2s2s\v\kk')\*/D*) 

X(l+EI(2^jt»|^')|VA2)]-1. (63) 
hh' 

The prime in the first sum indicates k,k' do not equal 
the excited single-particle state in n. The subscript c 
after | (njZ0p\i)\

2 indicates that only connected terms 
are included. This means that terms as shown in Fig. 
11 (b) are not to be included as they are accounted for 
by the factor following | (n \ ZoP \ i) \ c

2> All normalization 
corrections are accounted for by the last factor of Eq. 
(63). The sums over k and k' include all excited states 
although for Be the (2p) (2p) excitation dominates. The 
terms | (2s2s \ v | kk') |2 should include appropriate factors 
to account for the small nondiagonal correlation terms 
discussed in Sec. V. For example, we may multiply 
(kk' | v 12s2s) by the factor 

1 + ( E (WI v I k"kf")n-1 (k"km | v 12s2s)) 

X(kk'\v\2s2s)~1, (64) 

which accounts for nondiagonal particle-particle inter
actions, and similarly for particle-hole interactions. A 
is given by Eq. (18) with p, q replaced by 2s, 2s and Dn 

becomes 

Dn= ( e 2 s - (2sls | v 12^1^)+ (2snp | v 12snp)) 

+ {e2s~{2s\s\v\2s\s)+(2sls\v\ls2s) 

+ (2snp | v 12snp) — (2snp | v | np2s) 

— (ek— (kls\v \kls)+ (knp | v \ knp)) 

-(ek
f~ (k'ls \ v | k'ls)+ (k'ls | v | lsk') 

+ (k'np | v | k'np) - {k'np \ v \ nph')) - {2s2s \ v \ 2s2s) 

- (kk' | v | kk')+ (k2s | v | k2s)+ (kf2s | v | k'ls) 

+£COrr(2,?,2,s; l ^ u n e x ) + 2 Z w ( 2 s , l s ; l ^ u n e x ) 
-\-2ECOTr(2s,np; lsnpunex). (65) 

The correlation terms in Eq. (65) are written so as to 
emphasize the fact that the correlations are computed 
for the state (Is)(np) (2s)'\ The terms added to the 
single-particle energies € account for the fact that the 
single-particle states were computed in the potential 
field of the nucleus and (Is)2(2s) but one Is electron 
is now in the state np. 
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TABLE XV. Sum-rule evaluation for oscillator strengths in Be. 

Transitions Hartree-Fock Correlated 

2s —>np 
2s—^kp 
ls—*np 
ls->kp 

(2s)*-+(ns)(2p) 

2.0499 
0.6420 
0.2091 
2.0663 

1.2977 
0.5969 
0.2029 
1.9744 
0.0690 

Total 4.967 4.141 

When the state- np is in the continuum the matrix 
elements of Eq. (65) which involve this state are zero 
because of the continuum states' normalization (2/i?0)

1/2, 
where Ro is the radius of a large sphere tending to 
infinity.5 For np in the continuum, Dn= 0.438 for k, 
kf= 2py 2p and wj— ± 1 from Eq. (65). For comparison, 
Di— 0.3212 for two 2p excitations and tni—zLl. Calcu
lation of the factors on the right of Eq. (63) which 
multiply | (n\ZoP\i)\c2 gave the result 0.993 for np in 
the continuum. 

The sum rule of Eq. (61) was evaluated and the re
sults are given in Table XV. The transitions (2s)2 XS —> 
(ns) (2p) 1P are possible only when correlations of the 
two 2s electrons are included. The process is shown 
in Fig. 11(c). The most important transition is (2s)2—> 
(3s) (2p) lP for which the oscillator strength was found 
to be 0.0642. The correlated sum rule result 4.14 is in 
considerably better agreement with the theoretical 
value 4.00 than is the Hartree-Fock result 4.97.24 

The Be photoionization cross section ak for transitions 
of a 2s electron into a continuum p state is 

WEOL +L 

ak=4T2 E \(2snp1P(ML)\Z0p\(2s)21S)\2, (66) 

where the continuum electron has energy k2/2, UE is 
the ionization potential plus k2/2, and a is the fine struc
ture constant.25 The continuum function in this case 
has the normalization factor (2/7r)1/2. The cross section 
crk is plotted in Fig. 12. The curve labeled "corr" 
includes correlation effects from the two 2s electrons in 
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\ 1 1 

"""""""—"~-̂ irL"*"~J 

i i i «.., 
0.2 0.4 
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FIG. 12. Photoionization cross sections for Be(2^ —> kp). 

24 The term "Hartree-Fock result" means that correlations are 
not included and the calculations used the single-particle states of 
Eq. (13), except for <pu, obtained from Ref. 8. 

25 M. J. Seaton, Proc. Roy. Soc. (London) A208, 408 (1951). 

the ground state and also the normalization factor. The 
excited state (2s) (kp) lP is obtained from the Hartree-
Fock single-particle states of Eq. (13) and does not 
include correlations. The curve labeled O-HF omits the 
correlation and normalization corrections of the ground 
state. 

VII. DISCUSSION AND CONCLUSIONS 

In the previous sections it was shown that many-body 
perturbation theory may be used to obtain many varied 
atomic properties from correlation energies to oscillator 
strengths. Much of the value of this approach lies in 
the fact that once the set of single-particle states for the 
perturbation theory has been calculated and used for 
one property, it is relatively easy to use the same states 
and many of the matrix elements from the first calcula
tion to obtain additional atomic properties. Also, from 
the evaluation of diagrams for one calculation, one often 
develops a physical feeling as to which diagrams will be 
important in other calculations since many of the matrix 
elements and denominators are equal in different dia
grams. In many cases it is possible to relate quantita
tively the diagrams for different calculations. 

The convergence of the perturbation expansion is 
strongly dependent on the choice of the basis set of 
single-particle states, and in Sec. II it was pointed out 
that it is desirable to choose the potential in such a 
way that the excited states correspond essentially to the 
physical single-particle excitations. This approach, 
which is a departure from the previous use of the 
Hartree-Fock potential in Ref. 5, was justified in Sec. II. 
For all atoms there is now an infinite number of excited 
bound states and the continuum to be included in the 
perturbation expansion. However, it was shown in the 
calculations of Sees. I l l , IV, V, and VI that perturba
tion calculations are readily made using this set of 
states and the convergence of the expansion is much 
more rapid than in Ref. 5. The sums over the infinite 
number of bound excited states were easily carried out 
by use of the n~z rule which was demonstrated in Sec. 
III. 

The correlation energy for Be 2s electrons excited 
into /== 1 states was found to be —0.0436 a.u. as com
pared with —0.0426 a.u. calculated in K. This particular 
calculation was repeated in this paper since in K the 
perturbation expansion converged very slowly for 2s 
correlations and the accuracy of the calculation was 
estimated to be approximately 5%. However, with the 
basis set of this paper the convergence was quite rapid 
and the accuracy of the result is estimated at better 
than 1%. 

The perturbation theory may also be used to calculate 
other quantities such as polarizabilities and shielding 
factors as shown in Sec. V. The perturbation is more 
complicated than in the correlation energy calculation 
because there is now an additional perturbation due to 
the presence of an external charge. The second-order 
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result for the dipole polarizability ad was found to be 
12.15 A3 but when the higher order terms were included 
the result was changed to 6.93 A3 with an expected 
accuracy of a few percent. The higher order terms are 
particularly important in this case because the two 2s 
electrons have strong correlations into 1=1 states. This 
result may be compared with the second-order calcula
tions of Kelly and Taylor17 which gave 4.54 A3. As 
pointed out by KT,17 their approach is equivalent to the 
uncoupled Hartree-Fock approximation of Dalgarno15 

which also yielded 4.5 A3. The second-order result of K T 
differs greatly from the second-order result of this paper 
because of the different basis sets of single-particle 
states. There are propagation corrections to the second-
order calculations of KT because the interactions of 
excited states with the occupied unexcited states do not 
cancel the interaction with the Hartree-Fock potential. 
Since there is partial cancellation between the propaga
tion corrections shown in Fig. 5(d) and the correlation 
terms of Figs. 5(b) and (c), the approach of K T can 
give reasonable results in second order when the cor
relations are strong. In this case the second-order re
sults of this paper are poor and higher order terms must 
be included. However, when the correlations become 
small the propagation corrections do not necessarily 
also become small; and the second-order calculations of 
KT and of Dalgarno's uncoupled Hartree-Fock method 
may give results which are less than the correct solution. 
In general, it should be preferable to use either the 
coupled Hartree-Fock method of Dalgarno16 or the 
perturbation theory approach presented in this paper 
for calculating polarizabilities and shielding factors. 
Dalgarno has previously pointed out that the coupled 
Hartree-Fock method is much more accurate than the 
uncoupled method.15 

The dipole shielding calculations gave the second-
order result 4.296 which is considerably higher than the 
1.77 result of KT. This second-order difference has the 
same explanation as for a^ After the higher order terms 
were included, the final result was 0.972, with an esti
mated accuracy of approximately 5%. This value is in 
good agreement with the theoretical value 1.00. In 
order to obtain the value 0.972, it was necessary to 
consider all types of diagrams and the calculations were 
more complicated than for ad because of large effects 
from diagrams involving Is— 2s correlations. The calcu
lation of higher order diagrams may also be carried out 
with the basis set used by KT as shown in K. However, 
it is then necessary to sum diagrams like that of Fig. 

5(d). The basis set of this paper sums these diagrams 
exactly and seems to be both more accurate and more 
convenient when higher order terms are to be included. 

The calculated quadrupole polarizability was 15.09 A5 

in second order and was changed to 14.06 A5 by inclu
sion of third-order terms. Again the second-order result 
is much higher than 9.26 A5 as calculated by KT. The 
accuracy of the second- and third-order calculations is 
expected to be within 2%. However, there is no assur
ance that the fourth-order terms which have been 
omitted are small. The calculated quadrupole shielding 
factor Yoo was 1.06 in second order as compared with 
0.67 computed by KT. After inclusion of third-order 
terms 7^ was reduced to 0.75. The Is—2s correlations 
contributed significantly to the third-order terms for 
7oo just as for #». 

The methods of Sec. V may be readily applied to the 
calculation of higher order polarizabilities and shielding 
factors and it is probably a good approximation to 
limit these calculations to second order because correla
tions in higher / states are expected to be quite small. 

In Sec. VI it was shown that the basis set of single-
particle states of this paper is also useful in calculating 
quantities such as excitation energies, oscillator 
strengths, and photionization cross sections. Correla
tions generally were included only for the ground state 
where they are expected to be most important. However, 
in a more detailed calculation the correlations in the 
excited states could also be included. The accuracy of 
these calculations is indicated by the evaluation of the 
sum rule which is theoretically 4.00 and was calculated 
as 4.14 including ground-state correlations and 4.97 
without correlations. 

The numerical calculations of this paper were for Be 
which has only four electrons and a simple closed shell 
structure. However, the perturbation theory is appli
cable to other atoms and may be particularly useful for 
atoms with a large number of electrons. In addition, 
many of the features of the perturbation theory which 
were used in the previous sections may be applied not 
only to other atoms but to other types of finite systems. 
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